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BACKGROUND: Exposure to chemicals during critical windows of development may re-program liver for increased risk of nonalcoholic fatty liver dis-
ease (NAFLD). Bisphenol A (BPA), a plastics component, has been described to impart adverse effects during gestational and lactational exposure.
Our work has pointed to nuclear factor E2-related factor 2 (Nrf2) being a modulator of hepatic lipid accumulation in models of NAFLD.
OBJECTIVES: To determine if chemical exposure can prime liver for steatosis via modulation of NRF2 and epigenetic mechanisms.

METHODS: Utilizing BPA as a model exposure, pregnant CD-1 mice were administered 25 lg=kg=day BPA via osmotic minipumps from gestational
day 8 through postnatal day (PND)16. The offspring were weaned on PND21 and exposed to same dose of BPA via their drinking water through
PND35. Tissues were collected from pups at week 5 (W5), and their littermates at week 39 (W39).
RESULTS: BPA increased hepatic lipid content concomitant with increased Nrf2 and pro-lipogenic enzyme expression at W5 and W39 in female off-
spring. BPA exposure increased Nrf2 binding to a putative antioxidant response element consensus sequence in the sterol regulatory-element binding
protein-1c (Srebp-1c) promoter. Known Nrf2 activators increased SREBP-1C promoter reporter activity in HepG2 cells. Methylated DNA
immunoprecipitation-PCR and pyrosequencing revealed that developmental BPA exposure induced hypomethylation of the Nrf2 and Srebp-1c pro-
moters in livers of W5 mice, which was more prominent in W39 mice than in others.
CONCLUSION: Exposure to a xenobiotic during early development induced persistent fat accumulation via hypomethylation of lipogenic genes.
Moreover, increased Nrf2 recruitment to the Srebp-1c promoter in livers of BPA-exposed mice was observed. Overall, the underlying mechanisms
described a broader impact beyond BPA exposure and can be applied to understand other models of NAFLD. https://doi.org/10.1289/EHP664

Introduction
The prevalence of nonalcoholic fatty liver disease (NAFLD) has
increased from 3.9% in 1988–1994 to 10.7% in 2007–2010
(Bedogni et al. 2014). There is evidence that, in addition to
accepted factors such as obesity, energy imbalance, and sedentary
lifestyle (Li et al. 2002), critical windows of development may
prime or reprogram the liver for increased risk of disease, such as
NAFLD. Multiple classes of chemicals of environmental expo-
sures, including pesticides, insecticides, and polychlorinated
biphenyls, are potential modifiers of fat metabolism in liver, and
such exposures are suspected to increase the risk for developing
NAFLD (Al-Eryani et al. 2014). These exposures can be tools to
better elucidate mechanisms by which hepatic lipid deposition
occurs. In this study, bisphenol A (BPA), a plastics component
used in manufacturing of polycarbonate and epoxy resins found
in plastic bottles, food containers, metal cans, and thermal
receipts was utilized to identify underlying epigenetic mecha-
nisms of steatosis.

In rodents, perinatal BPA exposure increased hepatic lipid
content and lipogenic gene expression, along with disturbances in

adipokines and insulin signaling in adolescent and adult female
offspring (Ben-Jonathan et al. 2009; Alonso-Magdalena et al.
2010; Angle et al. 2013). Epigenetic mechanisms, such as DNA
methylation and histone modifications, contribute to NAFLD
(Pogribny et al. 2009; Lee et al. 2014). DNA-methylation pat-
terns and lipogenic gene expression have been correlated in liver
biopsy tissues from NAFLD patients (Sookoian et al. 2010). The
mechanism by which early-life BPA exposure induces lipogenic
genes, such as sterol regulatory element binding protein-1c
(Srebp-1c), in rodents has not been elucidated, but induction
could occur through promoter hypomethylation (Wei et al. 2014).

Nuclear factor E2 related factor 2 (Nrf2) functions primarily as
an antioxidant defense of the cell. Recently, Nrf2 has been linked
to adipose differentiation and lipid homeostasis as reviewed by
(Schneider and Chan 2013). Previous work has suggested that
NRF2 expression aids in hepatic lipid accumulation. In leptin-
deficient mice, constitutive activation of Nrf2, via Kelch-like
ECH-associated protein 1 (Keap1) knockdown (KD), enhanced
hepatic steatosis (Xu et al. 2012). Also, hepatic lipid deposition
and glucose tolerance was worsened in Keap1KD mice fed a long-
term high-fat-diet– challenge (More et al. 2013). In rodent preadi-
pocyte experiments, Nrf2 transcriptionally regulated Peroxisome
proliferator-activated receptor gamma (Ppar-c) and CCAAT/
enhancer-binding protein (Cebp-b) to enhance adipocyte differen-
tiation and consequently lipid synthesis (Pi et al. 2010).

Herein, we utilized BPA as a tool to uncover novel methyla-
tion changes associated with hepatic steatosis in the Srebp-1c
and Nrf2 promoters. First, we hypothesized that perinatal-
peripubertal (PNPP) BPA exposure induces hypomethylation of
CpG sites in promoters of lipogenic genes [e.g., Srebp-1c and
fatty acid synthase (Fas)] early in development that persists into
adulthood. Second, we hypothesized that BPA exposure would
induce Nrf2 expression in association with lipogenic gene expres-
sion (i.e., Srebp-1c). PNPP BPA exposure increased hepatic lipid
deposition in conjunction with lipogenic enzyme expression. We
identified novel sites in the Fas, Srebp-1c, and Nrf2 genes that
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were hypothmethylated in conjunction with steatosis. Moreover,
recruitment of Nrf2 to the Srebp-1c promoter increased in livers
of BPA-exposed mice. Moreover, tissues from PNPP BPA-
exposed male mice were also studied alongside tissues of female
mice. In accordance with previous findings (Rubin et al. 2016),
which suggest sex-specific effects of BPA PNPP exposure, we
also observed prominent effects in females as opposed to males.

Overall, the underlying mechanisms described have a broader
impact beyond BPA exposure and can be applied to understand
more general mechanisms contributing to hepatic steatosis.

Materials and Methods

Animals and BPA Administration
CD-1 male and female mice (10 – 12 week old) were purchased
(Charles River Laboratories) and maintained in temperature- and
light-controlled (14/10-h light/dark cycle) conditions at the Tufts
University Human Nutrition and Research Center Animal
Facility. All experimental procedures were approved by the Tufts
University New England Medical Center Institutional Animal
Care and Use Committee. All animals were treated humanely and
with regard for alleviation of suffering. The food (Harlan Teklad
Rodents Diets® 2018 chow, Harlan Laboratories), polysulfone
cages, and water were assessed for estrogenicity, and the levels
were found to be negligible. Mice were paired for mating, and
females were monitored daily for evidence of vaginal plugs.
Upon confirmation of a plug (day 1 of pregnancy), females were
housed individually. On gestational day (GD) 8, dams were
implanted subcutaneously with Alzet osmotic minipumps (Alza
Corp.) designed to deliver vehicle alone (50% DMSO in water)
or BPA (25 lg=kg bw=day) based on mother’s body weight on
GD 8 for a period of 4 weeks, and therefore exposure of the dams
continued through postnatal day (PND) 16. On PND21, litters
were weaned, and BPA exposure was continued in the offspring
of the BPA treatment group via administration in the drinking
water. BPA exposure to the weanlings continued through PND35
(W5) and thus encompassed the prepubertal and peripubertal pe-
riod. Schematic for number of animals in this study is described
in Figure S1. The study included n=5 dams per treatment group
(vehicle or BPA) and one litter per dam. Pups were culled to 8
pups per litter (4 males and 4 females) the day after birth
(PND2). Two female mice were chosen arbitrarily per dam for
W5 studies (n=10), and one female per dam was chosen for
W39 studies (n=5). Another female pup was subjected to the
high-fat-diet study, and the data from that work will be published
as a part of an independent manuscript. One male pup per dam
was also studied at W39 (n=5), and data are provided in Figure
S2. Tissues collected from both W5 and W39 littermates were
stored in −80�C for further analysis.

The rationale for delivering BPA via osmotic minipump was
to decrease variability in exposure using glass drinking bottles
that are subject to release of water due to mouse activity. Other
studies that have evaluated BPA effects have utilized minipumps,
such as perinatal exposure to BPA via subcutaneous minipump to
assess fertility and fecundity in female mice (Cabaton et al. 2011),
as well as disturbed global metabolism (Cabaton et al. 2013). With
respect to environmental chemical exposure, conducting the study
at a low dose was imperative to maintain human exposure rele-
vance. The Environmental Protection Agency and U.S. Food and
Drug Administration published tolerable daily intake (TDI) value
for BPA as 50 lg=kg, and cutoff dose for low-dose effects is
5 mg=kg=day as a, regardless of the route or duration of exposure
(Melnick et al. 2002). The exposure level (50 lg=kg) chosen in
this study is below TDI and Low Observable Adverse Effect Level
(LOAEL) levels. More important, published studies suggest that a

dose of 400 lg=kg bw=day in mice resulted in serum levels
(0:5 ng=ml) of unconjugated BPA, which is within the range of or,
in some cases, lower than levels measured in human serum after
environmental exposure (2 ng=ml) (Taylor et al. 2011). Following
exposure to 25 lg=kg=day BPA as described here, circulating lev-
els of unconjugated BPA in dams and pups were found to be
below the detectability of the assay (<0:6–0:7ng=ml) (unpub-
lished data). As hepatic lipid content and gene expression was our
primary end point, we surveyed the livers first for those changes
both in male and female. Based on our analysis that showed
changes in female livers, we decided to continue with the analysis
of tissues from females. Data from males is depicted in
Supplementary Material (Figure S2).

Hepatic Lipid Content
Lipids were extracted from liver tissue by methanol-chloroform
as described (More et al. 2013). Triglyceride quantification was
performed using a kit from Pointe Scientific Inc. Oil Red O
(ORO) staining was performed as described (More et al. 2013).

RNA Isolation and Quantitative Real-time PCR
Total RNA isolation and quantitative real-time PCR was per-
formed as described earlier (Xu et al. 2012). Target gene expres-
sion was calculated from Cp value, and normalized to expression
of housekeeping gene b2-microglobulin (B2M) to get relative
expression. Primers are listed in Table S1.

Relative Protein Expression by Western Blot
Total protein extraction and Western blot were performed as
described earlier (More et al. 2013). b-Actin was used as a house-
keeping loading control. Antibody source and conditions are
detailed in Table S2.

Glutathione (GSH) Quantification Assay
Reduced GSH was determined using a GSH-Glo® kit (Promega).
Briefly, liver tissues (∼ 20 mg) were extracted with PBS contain-
ing 2mM EDTA and subjected to the assay.

Chromatin Immunoprecipitation (ChIP) Assay
ChIP assays using PNPP BPA-treated liver tissues were per-
formed according to the ChIP-IT® Express Kit (Active Motif)
with modifications. Briefly, liver tissue homogenate was fixed by
37% formaldehyde followed by sonication to obtain 200–800 bp
fragments. Sheared chromatin was incubated with ChIP validated
rabbit anti-Nrf2 antibody (C-20, Santa Cruz Biotechnologies) or
anti-rabbit IgG antibody overnight at 4°C. Antibody-bound chro-
matin was eluted, and purified DNA fragments were analyzed by
end-point PCR or real-time PCR using primers that covered the
putative antioxidant response element (ARE) sequences in the
mouse Srebp-1c promoter (Table S3). Results are represented as
agarose gel scans (end-point PCR) as well as fold enrichment
(qPCR).

Methylation Analysis
For all DNA methylation analyses, DNeasy® Blood & Tissue Kit
(Qiagen) was used to isolate genomic DNA from liver tissues.

Global DNAMethylation
Genomic DNA from liver tissues was isolated by DNeasy®
Blood & Tissue Kit (Qiagen). Global DNA methylation was
assessed by determination of 5-methylcytosine (5-mC) using
ELISA-based MethylFlash™ Methylated DNA Quantification Kit
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(Epigentek) following the manufacturer’s instructions. Briefly, 100 ng
of genomic DNA was loaded into each well and absorbance was
read on a microplate reader at 450 nm. The amount of 5-mC of
total DNA was calculated as outlined by the manufacturer.

Methylated DNA Immunoprecipitation (MeDIP)
MeDIP assays were performed as described (Guerrero-Bosagna
et al. 2010) with genomic DNA and 5-mC monoclonal antibody
or anti-rabbit IgG antibodies (Cell Signaling Tech). Methylated
enriched DNA was amplified by real-time PCR by using primers
that covers CpG sites of Srebp-1c, Fas, and Nrf2 promoters
(Table S4). Methylation status of these promoters was plotted as
fold enrichment.

Pyrosequencing
Quantitative DNA methylation bisulfite sequencing analysis and
primer design at CpG sites was performed by using PyroMark®
MD technology (Qiagen). Genomic DNA was bisulfite converted
using the EZ DNA Methylation™ Kit (Zymo Research), and
amplification of Nrf2 gene regions of interest was performed using
the PyroMark® PCR Kit (Qiagen), forward primers (50 pmol), and
biotinylated reverse primers (50 pmol). The PCR conditions, for-
ward, reverse, and sequencing primers and biotin labeling are
shown in Table S5. The PyroMark® MD Pyrosequencer platform

(Qiagen) was utilized according to the manufacturer’s protocol.
Percent of methylated cells at each CpG site was computed by Pyro
Q-CpG Software™, and the software also includes internal quality-
control checks (e.g., bisulfite conversion check). Percent DNA
methylation at each CpG was standardized to batch (e.g., experi-
mental plate) by calculating a standard curve from controls from 0%
to 100% methylation status ran with each 96-well plate (EpigenDx).

Histone Extraction for Acetyl Histone Western Blot
Histone proteins were extracted from liver tissues using a total-
histone-extraction kit (Epigentek), according to the instructions
provided by the manufacturer. Then, the protein concentration of
the histone proteins was measured by DC assay. Relative protein
expression of total histone H3 and H3K9 was assessed by
Western blot by using specific antibodies.

MicroRNA Quantification
Total RNA from W5 and W39 liver tissues after PNPP BPA
exposure was isolated using TRIzol™ reagent (Invitrogen™,
Thremo Fisher Scientific). In addition, 600 ng total RNA was
used for miRNA cDNA preparation using RT2™ miRNA first
strand kit (Qiagen), and the expression of mature miRNAs was
measured by RT-PCR by using specific primers for miR-34a, miR-
122, and miR-370 (SA Biosciences). The miRNA expression was

Figure 1. Effects of PNPP BPA exposure on body weight and hepatic lipid accumulation in female CD-1 mice. A) Body weight and liver weight. Asterisk (*) repre-
sents significant difference in weights between BPA treated and vehicle treated animals of same age (p≤ 0:05). B) Hepatic triglyceride quantification. C) Oil Red O
staining of lipids in the liver tissue. Representative images are displayed in 200X magnification. D) Quantification of oil red staining density from all the samples.
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normalized to expression level of housekeeping miR-U6 (SA
Biosciences).

Transient Transfection Reporter Gene Assay
The human SREBP-1C promoter of 1565 bp corresponding to the
50 upstream region cloned in pGL3-basic luciferase vector was
donated by Dr. Marta Casado (Instituto de Biomedicina de
Valencia, Valencia, Spain). The NRF2 ORF cloned into EV26
was donated by Dr. Jose Manautou (University of Connecticut,
Storrs, Storrs, Connecticut). Co-transfections in HepG2 cells
were performed using Lipofectamine 3,000 (Life Technologies).
Cells were treated with oleanolic acid (50 lM) and sulforaphane
(10 lM) for 12 hours. Luciferase activity was measured using a
Dual-Luciferase® Reporter Assay System (Promega).

Protocol for Cryopreserved Human Hepatocyte
Single-donor cryopreserved human hepatocytes (male, 56 years
of age) were obtained from Xenotech LLC (Lenexa; Catalog no.
H1000:H15+ , Lot No. HC5-25). Hepatocytes were thawed and
cultured following Xenotech protocol. Briefly, cells were thawed
in pre-warmed thawing media (supplemented DMEM without
Pen/Strep and isotonic Percoll™). Hepatocytes were pelleted by
centrifugation at 100× g for 5 min at 4°C, resuspended in hepato-
cyte plating (seeding) medium (supplemented DMEM without
Pen/Strep). The cell suspension was quantified for viability and
cell concentration was based on Trypan Blue (Millipore Sigma)
exclusion. Cell concentration of the hepatocyte suspension was
adjusted to 1:4× 106 permL in plating (seeding) media. A vol-
ume of 330 lL and 1:6mL of the cell suspension were added to
each well of 24-well plate and 6-well plate respectively. Seeded

plates were kept under an atmosphere of 95% air and 5% CO2 at
37°C. After 3 hrs, plating medium was replaced with hepatocyte
culture medium (serum-free supplemented MCM+ (Modified
Chee’s Medium), spiked with Matrigel (diluted to 0:25mL=mL
in hepatocyte culture media) to overlay the cells. After 24 hrs,
cells were treated with BPA (100 nM) and vehicle (DMSO–01%
v/v). Treatments were continued for 72 hrs; every 24 hrs, media
was removed and replaced by fresh media containing treatments.
After treatment, cells were washed twice with saline and har-
vested to isolate RNA, lipids, and ORO staining.

Statistical Analysis
Data are represented as average ±SEM (W5, n=10=group;
W39, n=5=group). All statistical analyses were performed by
Student’s t-test. Asterisk (*) indicates statistically significant dif-
ference between the control and BPA treated group (p<0:05).

Results

Effects of PNPP BPA Exposure on Body Weight and
Hepatic Lipid Accumulation in Female Offspring
BPA exposure increased body weight by 5% at W5, and
increased body weight by 15% at W39 (Figure 1A), but liver
weight was similar between treatment groups (Figure 1A). BPA
exposure also increased hepatic triglyceride content at W5 by
33%, but not at W39 (Figure 1B). ORO staining revealed BPA
increased hepatic lipid deposition at W5 and W39 (Figures 1C &
1D) females. Livers from male offspring were also analyzed.
Both W5 and W39 PNPP BPA-exposed males and control males
had similar body weights. Liver triglycerides and mRNA

Figure 2. Effects of PNPP BPA exposure on mRNA expression of lipogenic targets in livers of female CD-1 mice (A.W5; B. W39). (*) represents significant
difference in weights between BPA treated and vehicle treated animals of same age (p≤ 0:05).
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expression of lipogenic genes were also similar between PNPP
BPA-treated males and controls at W39 (Figure S2). Therefore,
female mice were chosen to characterize further.

Effects of PNPP BPA Exposure on Hepatic Lipogenic Gene
Expression in Female Mice at Puberty and Adulthood
Hepatic mRNA expression of transcription factors (Srebp-1c,
Ppar-c) and enzymes acetyl-CoA carboxylase (Acc-1), Fas,
stearoyl-CoA desaturase-1 (Scd-1), and glycerol 3 phosphate ace-
tyl transferase (Gpat) was measured. At W5, lipogenic targets
were induced by BPA by 15 – 30 %. At W39, BPA exposure
approximately doubled Ppar-c, Fas, Acc-1, and Gpat mRNA
expression (Figures 2A, 2B). Along with lipogenesis, lipid oxida-
tion and transport targets were also measured on mRNA level.
No consistent changes were observed for b-oxidation or fatty
acid transport proteins with PNPP BPA exposure (Figures S3,
S4). Increased protein expression for multiple lipogenic targets
was also observed at W5 (Figures 3A, 3B) and W39 (Figures 3C,
3D), with Ppar-c, Srebp-1c, and Fas protein levels in liver being
increased at both W5 and W39.

Effects of PNPP BPA Exposure on the Nrf2 Signaling
Pathway
BPA exposure increased Nrf2 and glutamate cysteine Ligase
(Gclc) mRNA and protein expression at W5 and W39 (Figures
4A–D). GSH content was increased (W5) or remained unchanged

(W39) after BPA exposure, suggesting the absence of significant
oxidative stress (Figures 4E, F). In addition, liver expression of
inflammation markers was similar between control and BPA-
exposed mice (Figure S5).

Effects of PNPP BPA Exposure on Promoter Methylation in
Target Genes
The effect of BPA on gene-specific promoter methylation was
determined using methylated-DNA immunoprecipitation (MeDIP).
Promoter sequences for lipogenic targets were analyzed for pres-
ence of CpG sites on Methprimer (University of California), and
these sites were checked for methylation status. In W5 mice,
BPA decreased methylation in regions upstream of the transla-
tional start site. BPA-treated groups showed less enrichment of
5-mC at the Srebp-1c (−231 to −346 and −1325 to −1456), and
at the Fas (−306 to −472 and −654 to −832) promoters, and at
one region of the Nrf2 promoter (−1059 to −1168) (Figure 5). In
W39 livers, BPA was associated hypomethylation at multiple
regions. BPA exposure decreased methylation in the Srebp-1c
promoter at −231 to −346 and −1325 to −1456. Moreover,
pyrosequencing of the Nrf2 promoter (−1405 to −1088) contain-
ing 4 CpG sites (CpG #1, 2, 3, and 4, respectively at −1132,
−1144, −1147, −1157) revealed that in W5, CpG #1 site had
less methylation in BPA-treated mice compared to controls. No
change in three other CpG sites was observed. At W39, lower
percent methylation of CpG #4 was detected in BPA-exposed
mice. We investigated whether the observed changes in DNA

Figure 3. Effects of PNPP BPA exposure on protein expression of lipogenic transcription factors and enzymes in livers of female CD-1 mice. (A: W5 blots, B:
quantification of W5 blots, C: W39 blots, D: quantification of W39 blots). Nuclear proteins were detected for expression using specific antibodies for peroxisome
proliferator activated receptor gamma (Ppar-c), sterol regulatory element binding protein-1c (Srebp-1c), and phosphorylated Srebp-1c. Fatty acid synthase (Fas),
acetyl-CoA carboxylase (Acc) and phosphorylated Acc were quantified from total protein lysates by Western blot using specific antibodies. The mean blot intensity
is presented as percent expression. (*) represents significant difference in weights between BPA-treated and vehicle-treated animals of same age (p≤ 0:05).
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methylation were accompanied by changes in expression of
known DNA methyl transferase (Dnmt). Based on ELISA, we
demonstrated no change in global methylation upon BPA expo-
sure at W5 and genome-wide hypermethylation at week 39
(Figure S6A). Furthermore, Dnmt1, Dntm3a, and Dnmt3b
mRNA expression was not significantly altered with BPA expo-
sure (Figure S6B).

Effects of PNPP BPA Exposure on Nrf2 Recruitment to the
Srebp-1c Promoter
In W5 mice, BPA increased recruitment of Nrf2 to a putative
ARE binding site at −120 to −130 upstream of translational start
site in mouse Srebp-1c gene (depicted in Figure 6A) in compari-
son with negative control (IgG) depicted transcriptional re-
gulation of Srebp-1c by Nrf2 upon BPA treatment. Interestingly,
this transcriptional regulation of lipogenic proteins by Nrf2 was
persistent with BPA in W39 mice as well (Figure 6B). BPA ex-
posure caused higher binding of Nrf2 on Srebp-1c, at the same
region upstream of translation start site in W39 mice as in W5
mice. Real-time PCR results also showed higher enrichment of
Nrf2 on Srebp-1c promoter upon BPA treatment in both W5 and
W39 mice (Figure 6C).

Effect of NRF2 Over-expression on Transactivation of
Human SREBP-1C Promoter
Co-transfection with human NRF2 increased transactivation of a
human SREBP-1C luciferase reporter construct containing a

putative ARE (Figure 7A). Furthermore, treatment of HepG2
cells with known NRF2 activators, sulforaphane, and oleanolic
acid enhanced transactivation of the SREBP-1C promoter, sup-
porting the presence of functional ARE in the SREBP-1C pro-
moter (Figure 7B).

Discussion
Our previous work demonstrated induction of the Nrf2-signaling
pathway in models of hepatic steatosis (Xu et al. 2012; More
et al. 2013). A principle objective of this work was to address
epigenetic mechanisms underlying hepatic steatosis caused by
early-life exposure, as well as developmental induction of the
Nrf2 pathway. Based on previous rodent studies with BPA expo-
sure being linked to increased hepatic steatosis (Strakovsky et al.
2015), we chose a developmental exposure paradigm of BPA to
investigate Nrf2-mediated mechanisms in an environmental ori-
gin of NAFLD. This work describes new findings to the field,
such as Nrf2 induction in a model of developmentally induced
steatosis, the presence of a putative ARE in the Srebp-1c pro-
moter, and Srebp-1c activation via Nrf2. We observed persistent
effects of BPA-induced steatosis and epigenetic modification that
include DNA methylation of Nrf2 and lipogenic genes, which
brings to light the notion that DNA hypomethylation can persist
in sites of the liver genome well after exposure stops.

Timing of exposure to potential endocrine disruptors like
BPA is a critical determinant for disease susceptibility (Chapin
et al. 2008; Marmugi et al. 2012). Fetal development is consid-
ered to be very sensitive for any kind of external stress, including

Figure 4. Effects of PNPP BPA exposure on Nrf2 signaling in livers of female CD-1 mice. A) Nrf2 and its target gene glutamate cysteine ligase (Gclc)
expression in livers of W5 animals. Messenger RNA expression was quantified using real time polymerase chain reaction (RT-PCR). B) Protein expression
of nuclear Nrf2 and Gclc by Western blot for W5 animals and blot intensity quantification. C) Nrf2 and Gclc mRNA expression in W39 animals. D) Protein
expression of nuclear Nrf2 and Gclc in W39 animals and blot intensity quantification. E & F) Glutathione (GSH) content in W5 and W39 animals. (*) rep-
resents significant difference in weights between BPA treated and vehicle treated animals of same age (p≤ 0:05).
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exposure to environmental chemicals. Chemical exposure during
a vulnerable window of development may lead to increased inci-
dence of diseases later in life. This hypothesis is referred to as
“fetal basis of adult diseases,” which states that any effect on an
embryo can remain persistent for life (Heindel and vom Saal
2009). We observed that PNPP BPA exposure induced hepatic
steatosis without increase in liver weight, which has been noted
before (Wei et al. 2014; Marmugi et al. 2012). Furthermore,
PNPP BPA effect observed was prevalent in female offspring,
which is consistent with a recent pediatric study in which higher
urinary BPA levels were observed in females in comparison with
observations in males in association with NAFLD (Khalil et al.
2014). We observed that increased lipid level was associated
with induction of mRNA and protein expression of enzymes and
transcription factors that induce de novo lipogenesis (DNL).
Interestingly, fatty-acid oxidation targets were not changed in
liver for either age (Figure S3, S4). Some reported findings
suggest repressed fatty-acid oxidation by BPA. This difference
in results could be attributed to differences in species (rat vs.
mice), exposure mode (osmotic pump vs. oral gavage), or dose
(25 lg=kg=day in our study vs. approximately 100 lg=kg=day in
other research results (Strakovsky et al. 2015).

Typically, obesity and insulin-resistance precipitate hepatic
steatosis. Insulin resistance can be a cause or consequence of he-
patic steatosis, and DNL is under regulation of insulin action in
liver (Ress and Kaser 2016). In this study, steatosis was observed

in the absence of overt weight gain. Additionally, AKT phosphoryl-
ation and expression was similar in control and BPA-exposed liv-
ers, ruling out insulin-signaling changes as a cause for steatosis.
Similar AMPK phosphorylation patterns further suggest that
BPA-mediated steatosis did not occur via decreased AMPK ac-
tivity (Figure S7, S8). Additionally, mRNAs for inflammatory
markers were not induced, suggesting that steatosis was not
caused by oxidative stress, and induction of Nrf2 was likely not
due to inflammation (Figure S5). Together, these data argue for
more direct mechanisms in the regulation of Fas, Srebp-1c, and
Nrf2, such as promoter hypomethylation.

Epigenetic reprogramming and modification of genes has
been one of the proposed mechanisms for fetal or developmental
origin of adulthood and chronic diseases. The early developmen-
tal stage of embryo is a sensitive window for alteration in epige-
notype or genotype as adaptive response to any xenobiotics
exposure. Based on the ‘fetal plasticity’ theory (Heindel and vom
Saal 2009), any alteration in epigenotype or genotype in early
stages may result in lasting effects, possibly increasing risk of
adulthood diseases (Grun et al. 2006; Faulk et al. 2014). Here,
we observed alteration of epigenome in W5 mouse livers, and
even though effects were persistent in W39 mice, the site-specific
differences in methylation were evident (Table 1). These data
suggest that some sites on the DNA might be persistently
“marked,” whereas others are more “plastic.” This observation is
highly relevant to the field of epigenetics and supports other

Figure 5. Effect of PNPP BPA exposure on Srebp-1c, Fas, and Nrf2 promoter methylation. CpG sites in promoter sequences of Srebp-1c, Fas, and Nrf2 (A, B,
and C, respectively) up to 2 kb upstream of translational start site were analyzed to check methylation effects of PNPP BPA. Results are plotted as fold
enrichment.
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observations of plasticity in methylation or epigenetic drift with
aging (Tang et al. 2012; Teschendorff et al. 2013). Interestingly,
the site-specific methylation changes that we demonstrated were
not accompanied by global DNA hypomethylation (Figure S6).
Such discrepancies in the global vs. site-specific epigenetic
changes are not uncommon, as BPA has been described to alter
gene-specific methylation without affecting Dnmts expression
(Bromer et al. 2010). The precise mechanism by which BPA
exerts gene-specific hypomethylation remains unknown. As his-
tone and microRNA modifications have been linked to NAFLD
(Aagaard-Tillery et al. 2008; Panera et al. 2014) as well as BPA
exposure (Strakovsky et al. 2015; Kovanecz et al. 2014), prelimi-
nary analysis of these mechanisms was performed. Liver acety-
lated histone levels appeared unaltered with BPA exposure
(Figure S9). With BPA exposure, mi34a and mi122 mRNA levels
showed an increasing trend in W5 mice, but not in W39 mice
(Figure S10). We suggest detailed analysis of these epigenetic
changes to rule out the possibility of their involvement in BPA
induced steatosis.

Because W5 is when the exposures ended and steatosis was
observed, we evaluated whether direct BPA exposure could cause
lipid accumulation in hepatocytes, and we treated primary human
hepatocytes and HepG2 cells with BPA (Figure S11 and S12).
Lack of BPA-induced steatosis or NRF2 activation in primary
human hepatocytes further supported our hypothesis that BPA-
induced NAFLD is primarily via developmental exposure and
not due to direct exposure to BPA. Moreover, SREBP-1C pro-
moter reporter activity remained unchanged with BPA exposure,
in SREBP-1C as well as SREBP-1C+NRF2 co-transfection in
HepG2 cells (Figure S12). Perhaps direct exposure of the
mature hepatocyte to BPA elicits different cellular transcrip-
tional responses in comparison with the endoderm, hepato-
pancreatic progenitor cells, or hepatoblast during development.
The studies herein point to the importance of the developmental
window, and this window is difficult to recapitulate utilizing
cell-based models.

BPA-mediated induction of lipid synthesis enzyme expression
has been demonstrated before (Marmugi et al. 2012), however
the upstream mechanism by which BPA imparts this up-
regulation remains relatively unknown. One potential mechanism
could be via up-regulation of Nrf2 expression and regulation of
lipogenic genes (Xu et al. 2012; More et al. 2013). Although
most commonly studied for countering oxidative stress, Nrf2 can
be an upstream regulator of adipogenesis through Ppar-c and
Cebp-b transcriptional regulation in rodent pre-adipocytes (Pi
et al. 2010). PNPP BPA-exposure enhanced nuclear localization
concomitant with Nrf2 binding to an undescribed new putative
ARE sequence on the Srebp-1c promoter. This increase in Nrf2
signaling was likely not a result of oxidative stress, as GSH levels
in the liver tissues were not depleted, and inflammation was not

Figure 6. Nrf2 recruitment to the Srebp-1c promoter by chromatin immuno-
precipitation (ChIP). A) Schematic of Nrf2 recruitment on promoter of
Srebp-1c. B) End-point PCR. C) Real-time PCR amplification by using pri-
mers as enlisted in supplementary Table S3, which covers putative ARE
consensus sequence on promoter of Srebp-1c. Results are plotted as fold
enrichment in comparison with negative control.

Figure 7. NRF2 mediated transactivation of human SREBP-1C in vitro. A)
NRF2 expression plasmid were transiently co-transfected with the SREBP-
1C promoter luciferase reporter constructs (−1:5kb) or pGL3 basic, in
HepG2 cells. Luciferase activity was measured as relative firefly/renilla lu-
ciferase and was recorded as relative light units data are presented as mean
fold change ± SEM. B) SREBP-1C promoter luciferase reporter constructs
or pGL3 basic were transiently transfected into HepG2 cell. After 24 hrs of
transfection, HepG2 cell were treated with the oleanolic acid (50uM) and
sulforaphane (10 lM) along with DMSO (0.05%) for 12hrs. Luciferase ac-
tivity was measured using a commercial kit.

Table 1. Site-specific methylation (%) of 4 CpG sites for NRF2 promoter
upon PNPP BPA exposure in W5 (n=10 F pups) and W39 (n=5 F pups)
age mice.

CpG #1 CpG #2 CpG #3 CpG #4

Week 5
(N =10 F pups)
Control 20:47± 2:44 7:46± 1:62 2:39± 0:90 8:16± 1:88
BPA 11:61± 1:74* 6:52± 1:47 5:16± 2:24 10:84± 2:67

Week 39
(N =5 F pups)
Control 13:26± 0:61 6:44± 1:23 4:38± 1:74 19:03± 0:9
BPA 15:70± 3:30 6:49± 0:95 2:44± 1:26 7:64± 2:42*

Note: Values were adjusted to a standard curve of control DNA (ranging between 0 and
100%) run for each CpG site on the corresponding experimental plate for each sample.
Asterisk (*) represents significant difference in expression between BPA treated and
control animals (p≤ 0:05).
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observed (Figure S5). Nrf2 transfection in HepG2 cells, as well as
oleanolic acid and sulforaphane treatment, increased SREBP-1C
promoter reporter activity. These findings highly suggest a novel
function for Nrf2 as transcriptional regulator of hepatic DNL.

Our findings could be applicable to other chemicals that have
estrogenic properties, such as BPS and BPF, which possess po-
tency and efficacy similar to those of BPA with regard to
hormone-disruptive properties in vitro and in vivo (Rochester and
Bolden 2015), as well as potentially to other chemicals known to
cause lipid accumulation in liver via developmental exposure
(i.e., tributyltin) (Chamorro-Garcia et al. 2013).

Conclusion
Overall, the present study is an exploration into mechanisms of
early-life exposure and development of hepatic steatosis in adult-
hood. Novel hypomethylated sites in the Fas, Srebp-1c, and Nrf2
genes were identified in conjunction with steatosis; however, ex-
ploration into other epigenetic mechanisms is needed. Nrf2
recruitment to the Srebp-1c promoter in livers of BPA-exposed
mice was uncovered, which is a new finding for this important
transcription factor. The mechanisms described herein are broad
and can be applied to other environmental exposure and hepatic
steatosis models.
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